Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Shan Gao ${ }^{\mathbf{a}}$ and Seik Weng $\mathbf{N g}^{\text {b }}$ *

${ }^{\text {a }}$ College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.073$
$w R$ factor $=0.146$
Data-to-parameter ratio $=17.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[[tris(pyridine- κN)copper(II)]- μ-3-carboxylatophenoxyacetato- $\left.\kappa^{2} O^{3}: O^{\prime}\right]$ trihydrate]

The 3-carboxyphenoxyacetate ligand in the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, links adjacent tripyridinecopper(II) groups into a helical chain, which runs along the c axis of the hexagonal unit cell. The covalently bonded O atoms occupy trans sites in the basal plane of the squarepyramidal coordination of the Cu atom. The uncoordinated water molecules connect the chains into a three-dimensional network.

Comment

We are interested in metal complexes with carboxyphenoxyacetate because the dianion is a multidentate ligand with both rigid and flexible parts. We present here the crystal structure of the title $\mathrm{Cu}^{\text {II }}$ complex, (I), in which 3-carboxyphenoxyacetate plays the role of bridging ligand.

The $\mathrm{Cu}^{\mathrm{II}}$ atom has a square-pyramidal coordination geometry (Fig. 1 and Table 1). The $\mathrm{O}_{2} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CO}_{2}$ dianion links adjacent tripyridinecopper(II) cations into a helical chain, which runs along the c axis of the hexagonal unit cell (Fig. 2). The uncoordinated water molecules connect neighboring chains into a three-dimensional network through hydrogen bonds (Table 2). In the chain, the copper shows square-pyramidal coordination, with the covalently bonded O atoms occupying trans sites of the basal plane.

Other $\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2}-\mathrm{CO}_{2} \mathrm{Cu}$ adducts that have been characterized include the imidazole adduct, in which the ether O atom is also involved in coordination (Gao et al., 2004a), and the benzimidazole adduct, in which the dianion functions in the μ_{4}-bridging mode (Gao et al., 2004b). In this pyridine adduct, each carboxylate end of the dianion is only monodentate to copper.

Experimental

Copper dinitrate hexahydrate ($1.48 \mathrm{~g}, 5 \mathrm{mmol}$) and a slight excess of pyridine (1 ml) were added to an aqueous solution of 3-carboxy-

Received 7 November 2005 Accepted 21 November 2005 Online 26 November 2005

Figure 1
ORTEPII (Johnson, 1976) plot of (I). Displacement ellipsoids are drawn at the 30% probability level, and H atoms are drawn as spheres of arbitrary radii. [Symmetry code: (i) $1-x,-y,-\frac{1}{2}+z$.]

Figure 2
ORTEPII (Johnson, 1976) plot of the polymeric chain; the water molecules and H atoms are not shown.
phenoxyacetic acid $(0.97 \mathrm{~g}, 5 \mathrm{mmol})$. Drops of 0.2 M sodium hydroxide solution were added until the pH of the solution was approximately 6 . Blue block-shaped crystals of (I) were obtained after a week. Analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{CuN}_{3} \mathrm{O}_{8}$: C 52.54, H 4.96, N 7.66%; found: C 52.52, H $4.98, \mathrm{~N} 6.69 \%$.

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=549.04$
Hexagonal, $P 6_{5}$
$a=14.408$ (2) \AA
$c=21.630$ (4) A
$V=3888.6(8) \AA^{3}$
$Z=6$
$D_{x}=1.407 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 26385
reflections
$\theta=3.3-27.5^{\circ}$
$\mu=0.89 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, blue
$0.37 \times 0.25 \times 0.19 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID IP diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.591, T_{\text {max }}=0.849$
27636 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.073$
$w R\left(F^{2}\right)=0.146$
$S=1.24$
5518 reflections
325 parameters
H -atom parameters constrained
5518 independent reflections
4814 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-18 \rightarrow 18$
$k=-18 \rightarrow 18$
$l=-28 \rightarrow 26$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0697 P)^{2}\right. \\
& +0.7075 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.03 \\
& \Delta \rho_{\max }=0.48 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.39 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 2571 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.05 \text { (2) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.952(3)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.332(4)$
$\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$1.951(3)$	$\mathrm{Cu} 1-\mathrm{N} 3$	$2.055(4)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.057(4)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 5^{\mathrm{i}}$	$177.5(2)$	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 2$	$87.9(2)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$89.1(2)$	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 3$	$90.8(1)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$89.7(1)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$97.1(2)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$89.9(1)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$164.6(2)$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$90.8(1)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 3$	$98.3(1)$

Symmetry code: (i) $-x+1,-y, z-\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1w-H1w1 $\cdots \mathrm{O} 2{ }^{\mathrm{H}}$	0.85	2.17	$2.800(6)$	131
O1w-H1w2 $\cdots \mathrm{O} 4^{\mathrm{i}}$	0.85	2.03	$2.835(6)$	158
O2w-H2w1 O^{i}	0.86	2.25	$2.789(7)$	121
O2w-H2w2 $\cdots \mathrm{O} 1 \mathrm{w}$	0.86	2.22	$2.766(8)$	121
$\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 2 \mathrm{w}$	0.86	1.83	$2.69(1)$	170

Symmetry codes: (i) $-x+1,-y, z-\frac{1}{2}$; (ii) $-y+1, x-y, z-\frac{1}{3}$.
C-bound H atoms were placed in calculated positions $[\mathrm{C}-\mathrm{H}=0.93$ (aromatic) and $0.97 \AA$ (methylene)] and included in the refinement as riding $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. Water H atoms were placed in chemically sensible positions on the basis of hydrogen-bonding interactions but were not refined $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})\right]$.

Data collection and cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); structure solution: SHELXS97 (Sheldrick, 1997); structure refinement : SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); publication material: SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund for Remarkable

metal-organic papers

Teachers of Heilongjiang Province (No. 1054 G036) and the University of Malaya for supporting this study.

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gao, S., Gu, C.-S., Huo, L.-H., Liu, J.-W. \& Zhao, J.-G. (2004a). Acta Cryst. E60, m1933-m1935.

Gao, S., Gu, C.-S., Huo, L.-H., Liu, J.-W. \& Zhao, J.-G. (2004b). Acta Cryst. E60, m1936-m1938.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

